
 
 

E, ALL_ROWS 

How To Write Efficient SQL Queries with Tips N Tricks 

 

 

   

1. Use the appropriate Oracle Optimizer 

 

The ORACLE optimizer has three primary modes of operation: 

 

  RULE 
  COST & 

  CHOOSE 

 

To set the optimizer goal, you can specify RULE, COST, CHOOS 

or FIRST_ROWS for the OPTIMIZER_MODE  parameter  in the  init.ora file at 

session level. You can override the optimizer’s default operations at both the 

query (using Hints) & session level (using ALTER SESSION command). 

 
The Rule- Based Optim izer ( RBO) evaluates possible execution paths & 

rates the alternative execution paths based on a series of syntactical rules. 

 
To make use of Cost- Based Optim izer ( CBO) , you need to make sure that 

you run the analyze command frequently enough to generate statistics about 

the objects in your database to accurately reflect the data. 

 
Setting OPTIMIZER_MODE to CHOOSE invokes CBO, if the tables have been 

analyzed and the RBO, if the tables have not been analyzed. 

 

By default, ORACLE uses CHOOSE optimizer mode. To reduce the potential for 

unplanned full table scans, you should avoid using the CHOOSE option; either use 

the RBO or the CBO throughout your database. 

 
2.  Operat ions That Access Tables 

 

ORACLE performs two operations for accessing the rows of a table: 

 
  TABLE ACCESS FULL 

 

A full table scan sequentially reads each row of a table. To 

optimize the performance of a full table scan, ORACLE reads multiple 

blocks during each database read. 

 
A full table scan is used whenever there is no w here clause on 

a query. 

 
  TABLE ACCESS BY ROW I D 

 

To improve the performance of table accesses, you can use this 

operation that allows you to access rows by their RowID pseduo- 

http://www.greenstechnologys.com/


column values. The RowID records the physical location where the row 

is stored. ORACLE uses indexes to correlate data values with RowID 

values – and thus with physical locations of the data. And because 

indexes provide quick access to RowID values, they help to improve 

the performance of queries that make use of indexed columns. 

 
3.  Share SQL Stat em ents 

 

ORACLE holds SQL statements in memory after it has parsed them, so the 

parsing and analysis won’t have to be repeated if the same statement is issued 

again. The single shared context area in the shared buffer pool of the System 

Global Area (SGA) is shared by all the users. Thus, if you issue a SQL statement, 

sometimes known as a cursor, that is identical to a statement another user has 

issued, you can take advantage of the fact that ORACLE has already parsed the 

statement and figured out the best execution plan for it. This represents major 

performance improvements and memory savings. But the cache buffering is 

applied only to simple tables, the multiple table queries & the joins are never 

cached. 

 

The DBA must set the appropriate INIT.ORA parameters for the context 

areas. The larger the area, the more statements can be retained there and the 

more likely statements are to be shared. 

 

Whenever you issue a SQL statement, ORACLE first looks in the context area 

to see if there is an identical statement there. Unfortunately, ORACLE does an 

extra string comparison on the new statement and the contents of the context 

area. To be shared, the SQL statements must truly be the same: carriage 

returns, spaces, and case (upper vs lower) all affect the comparison. 

 

In order to qualify for this matching condition, all three of the following rules 

must be true to make use of the parsed statement in the shared area. 

 
1 .  There must be a character-by-character match between the statement 

being examined and one already in the shared pool. 

 
Not e: 

Before this comparison is performed, Oracle applies an internal 

algorithm using the new statement. It then checks the results against 

values of statements already in the pool. If the new value matches one 

already there, then only the string comparison outlined in Rule 1 is 

performed. 

 
For e.g. 

 

SELECT * FROM EMP; 

is not the same as any of these: 

SELECT * from EMP; 
Select * From Emp; 

SELECT      * FROM EMP; 



The  following  statements  do  not  qualify  because  the  first  SQL 

statement is split over two lines whereas the second is on a single line. 

 

a.  Select pin from person where last_name = 

‘LAU’; 

 

b.  Select pin from person where last_name = ‘LAU’; 

 

2 .  The objects being referenced in the new statement are exactly the same 

as those objects in a statement that has passed the comparison in Rule 1. 

 
For e.g. 

 

Assume that for this example, the users have access to the objects as 

shown below: 

 
USER OBJECT NAME ACCESSED VI A 

 
Jack sal_limit private synonym 

work_city public synonym 

plant_detail public synonym 

 

Jill sal_limit private synonym 

work_city public synonym 

plant_detail table owner 

 

Consider the following SQL statements & why they can or cannot be 

shared between the two users listed above. 

 
SQL Stat em ent Object Matching W HY 

 
select max(sal_cap) NO Each user has a private synonym 

from sal_limit; sal_ lim it - these are different 

objects. 

 
select count(*) YES Both users reference w ork_ cit y 

from work_city by the same public synonym - the 

where sdesc same object. 

like 'NEW%'; 

 

select a.sdesc, NO User jack references plant_ detail  

b.location by a public synonym whereas user 

from work_city a, Jill is the table owner – these are 

plant_detail b different objects. 

where a.city_id = b.city_id; 

 
select * NO Each user has a private synonym 

from sal_limit sal_ lim it – these are different 

where over_time objects. 

is not null; 

 

3 .  If bind variables are referenced, they must have the same name in both 

the new & existing statements. 



 
 

For e.g. 

 

The first two statements in the following listing are identical, whereas 

the next two statements are not (even if the different bind variables have 

the same value at run time). 

 

select pin, name from people where pin = :blk1.pin; 

select pin, name from people where pin = :blk1.pin; 

 
select pos_id, sal_cap from sal_limit where over_time = :blk 1 .ot_ ind; 

select pos_id, sal_cap from sal_limit where over_time = :blk 1 .ov_ ind; 

4 .  Select the Most Efficient Table Nam e Sequence ( Only for RBO) 

ORACLE parser always processes table names from right to left, the table 

name you specify last (driving table) is actually the first table processed. If you 

specify more than one table in a FROM clause of a SELECT statement, you must 

choose the table containing the lowest number of rows as the driving table. When 

ORACLE processes multiple tables, it uses an internal sort/merge procedure to  

join those tables. First, it scans & sorts the first table (the one specified last in   

the FROM clause). Next, it scans the second table (the one prior to the last in the 

FROM clause) and merges all of the rows retrieved from the second table with 

those retrieved from the first table. 

 
For e.g. 

 

Table TAB1 has 16,384 rows. 

Table TAB2 has 1 row. 

 

Select TAB2 as the driving table. (Best Approach) 

SELECT COUNT(*) FROM TAB1, TAB2 0.96 seconds elapsed 

Now, select TAB1 as the driving table. (Poor Approach) 

SELECT COUNT(*) FROM TAB2, TAB1 26.09 seconds elapsed 

If three tables are being joined, select the intersection table as the driving 

table. The intersection table is the table that has many tables dependent on it. 

 
For e.g. 

 

The EMP table represents the intersection between the LOCATION table 

and the CATEGORY table. 

 
SELECT . . . 

FROM LOCATION L, 

CATEGORY C, 
EMP E 

WHERE E.EMP_NO BETWEEN 1000 AND 2000 

AND E.CAT_NO = C.CAT_NO 



AND E.LOCN = L.LOCN 

is more efficient than this next example: 

SELECT . . . 
FROM EMP E, 

LOCATION L, 

CATEGORY C 

WHERE E.CAT_NO = C.CAT_NO 

AND E.LOCN = L.LOCN 

AND E.EMP_NO BETWEEN 1000 AND 2000 

 
5 .  Posit ion of Joins in t he W HERE Clause 

 

Table joins should be written first before any condition of WHERE clause. And 

the conditions which filter out the maximum records should be placed at the end 

after the joins as the parsing is done from BOTTOM t o TOP. 

 
For e.g. 

 
Least Efficient :  ( Total CPU =  1 5 6 .3 Sec) 

 
SELECT . . . . 

FROM EMP E 
WHERE SAL > 50000 

AND JOB = ‘MANAGER’ 

AND 25 < (SELECT COUNT(*) 

FROM EMP 
WHERE MGR = E.EMPNO); 

 
Most Efficient :  ( Total CPU =  1 0 .6 Sec) 

 

SELECT . . . . 
FROM EMP E 

WHERE 25 < (SELECT COUNT(*) 

FROM EMP 

WHERE MGR = E.EMPNO ) 
AND SAL > 50000 

AND JOB = ‘MANAGER’; 

 
6 .  Avoid Using *  in SELECT Clause 

 

The dynamic SQL column reference (*) gives you a way to refer to all of the 

columns of a table. Do not use * feature because it is a very inefficient one as the 

* has to be converted to each column in turn. The SQL parser handles all the 

field references by obtaining the names of valid columns from the data dictionary 
& substitutes them on the command line which is time consuming. 

 
7.   Reduce the Num ber of Trips to the Database  

 

Every time a SQL statement is executed, ORACLE needs to perform many 

internal processing steps; the statement needs to be parsed, indexes evaluated, 



variables bound, and data blocks read. The more you can reduce the number of 

database accesses, the more overhead you can save. 

 
For e.g. 

 

There are 3 distinct ways of retrieving data about employees who have 

employee numbers 0342 or 0291. 

 
Method 1 ( Least Efficient) : 

 

SELECT EMP_NAME, SALARY, GRADE 
FROM EMP 

WHERE EMP_NO = 0342; 

 

SELECT EMP_NAME, SALARY, GRADE 
FROM EMP 

WHERE EMP_NO = 0291; 

 
Method 2 ( Next Most Efficient) : 

 
DECLARE 

CURSOR C1(E_ NO NUMBER) IS 

SELECT EMP_NAME, SALARY, GRADE 

FROM EMP 

WHERE EMP_NO = E_NO; 

BEGIN 
OPEN  C1(342); 

FETCH C1 I NTO …, …, …; 

. 

. 

OPEN  C1(291); 

FETCH C1 I NTO …, …, …; 

CLOSE C1; 

END; 

 
Method 3 ( Most Efficient) : 

 

SELECT A.EMP_NAME, A.SALARY, A.GRADE, 

B.EMP_NAME, B.SALARY, B.GRADE, 
FROM EMP A, 

EMP B 

WHERE A.EMP_NO = 0342 

AND B.EMP_NO = 0291; 

 
Not e: 

One simple way to increase the number of rows of data you can fetch with 

one database access & thus reduce the number of physical calls needed is to 

reset the ARRAYSIZE parameter in SQL*Plus, SQL*Forms & Pro*C. Suggested 

value is 200. 

 
8 .  Use DECODE to Reduce Processing 



The DECODE statement provides a way to avoid having to scan the same 

rows repetitively or to join the same table repetitively. 

 
For e.g. 

 

SELECT COUNT(*), SUM(SAL) 

FROM EMP 
WHERE DEPT_NO = 0020 

AND ENAME LIKE ‘SMITH%’; 

 

SELECT COUNT(*), SUM(SAL) 

FROM EMP 
WHERE DEPT_NO = 0030 

AND ENAME LIKE ‘SMITH%’; 

You can achieve the same result much more efficiently with DECODE:  

SELECT COUNT(DECODE(DEPT_NO, 0020, ‘X’, NULL)) D0020_COUNT, 

COUNT(DECODE(DEPT_NO, 0030, ‘X’, NULL)) D0030_COUNT, 
SUM(DECODE(DEPT_NO, 0020, SAL, NULL)) D0020_SAL, 

SUM(DECODE(DEPT_NO, 0030, SAL, NULL)) D0030_SAL 
FROM EMP 

WHERE ENAME LIKE ‘SMITH%’; 

 
Similarly,  DECODE  can  be  used  in  GROUP   BY   or  ORDER   BY   clause 

effectively. 

 
9 .  Com bine Sim ple, Unrelat ed Dat abase Accesses 

 

If you are running a number of simple database queries, you can improve 

performance by combining them into a single query, even if they are not related. 

 
For e.g. 

 

SELECT NAME 
FROM EMP 

WHERE EMP_NO = 1234; 

 
SELECT NAME 
FROM DPT 

WHERE DPT_NO = 10; 

 
SELECT NAME 
FROM CAT 

WHERE CAT_TYPE = 'RD'; 

The above three queries can be combined as shown below: 

SELECT E.NAME, D.NAME, C.NAME 
FROM CAT C, DPT D, EMP E, DUAL X 

WHERE NVL('X', X.DUMMY) = NVL('X', E.ROWID (+)) 

AND NVL('X', X.DUMMY) = NVL('X', D.ROWID (+)) 

AND NVL('X', X.DUMMY) = NVL('X', C.ROWID (+)) 



AND E.EMP_NO (+) = 1234 

AND D.DEPT_NO (+) = 10 

AND C.CAT_TYPE (+) = 'RD' 

 
1 0 . Delet ing Duplicat e Records 

 

The efficient way to delete duplicate records from a table is shown below. It 

takes advantage of the fact that a row’s ROWID must be unique. 

 

DELETE FROM EMP E 
WHERE E.ROW I D > (SELECT MI N( X.ROW I D) 

FROM EMP X 

WHERE X.EMP_NO = E.EMP_NO); 

 
1 1 . Use TRUNCATE inst ead of DELETE 

 

When rows are removed from a table, under normal circumstances, the 

rollback segments are used to hold undo information; if you do not commit your 

transaction, Oracle restores the data to the state it was in before your transaction 

started. 
With TRUNCATE, no undo information is generated. Once the table is 

truncated, the data cannot be recovered back. It is faster & needs few er 
resources. 

Use TRUNCATE rather than DELETE for wiping the contents of small or large 

tables when you need no undo information generated. 

 
1 2 . I ssue Frequent COMMI T statem ents 

 

Whenever possible, issue frequent COMMIT statements in all your programs. 
By issuing frequent COMMIT statements, the perform ance of the program is 

enhanced & its resource requirements are minimized as COMMI T frees up the 

following resources:  

 

  Information held in the rollback segments to undo the transaction, if 

necessary. 

 

  All locks acquired during statement processing. 

 

  Space in the redo log buffer cache 

 

  Overhead associated with any internal Oracle mechanisms to manage the 

resources in the previous three items. 

 
1 3 . Count ing Row s from Tables 

 

Contrary to popular belief, COUNT(*) is faster than COUNT(1). If the rows are 

being returned via an index, counting the indexed column – for example, 

COUNT(EMPNO) is faster still. 

 
1 4 . Use W HERE in Place of HAVI NG 

 

Avoid including a HAVING clause in SELECT statements. The HAVI NG clause 

filt ers  select ed  row s  only  aft er  all  row s  have  been  fet ched.  This could 



include sorting, summing, etc. Restricting rows via the WHERE clause, rather 

than the HAVING clause, helps reduce these overheads. 

 
For e.g. 

 
Least Efficient : 

 

SELECT REGION, AVG(LOC_SIZE) 

FROM LOCATION 
GROUP BY REGION 

HAVI NG REGION != ‘SYDNEY’ 

AND REGION != ‘PERTH’ 

 
Most Efficient : 

 

SELECT REGION, AVG(LOC_SIZE) 

FROM LOCATION 
GROUP BY REGION 

W HERE REGION != ‘SYDNEY’ 

AND REGION != ‘PERTH’ 

 
1 5 . Minim ize Table Lookups in a Query 

 

To improve performance, minimize the number of table lookups in queries, 

particularly if your statements include sub-query SELECTs or multi-column 

UPDATEs. 

 
For e.g. 

 
Least Efficient : 

 
SELECT TAB_NAME 
FROM TABLES 

WHERE TAB_NAME = (SELECT TAB_NAME 

FROM TAB_COLUMNS 

WHERE VERSION = 604) 

AND DB_VER = (SELECT  DB_VER 

FROM TAB_COLUMNS 

WHERE VERSION = 604) 

 
Most Efficient : 

 

SELECT 

FROM 

TAB_NAME 

TABLES 

 

WHERE (TAB_NAME, DB_VER) = (SELECT 

FROM 

WHERE 

TAB_NAME, DB_VER 

TAB_COLUMNS 

VERSION = 604) 
 

Mult i- colum n UPDATE e.g. 

 
Least Efficient : 

 

UPDATE EMP 



SET EMP_CAT = (SELECT MAX(CATEGORY) 

FROM EMP_CATEGORIES), 

SAL_RANGE = (SELECT MAX(SAL_RANGE) 
FROM EMP_CATEGORIES ) 

WHERE EMP_DEPT = 0020; 

 
Most Efficient : 

 

UPDATE EMP 

SET (EMP_CAT, SAL_RANGE) = 

(SELECT MAX(CATEGORY), MAX(SAL_RANGE) 

FROM EMP_CATEGORIES) 
WHERE EMP_DEPT = 0020; 

 
1 6 . Reduce SQL Overheads via “ I nline” St ored Funct ions 

 

SELECT H.EMPNO, E.ENAME, 

H.HIST_TYPE, T.TYPE_DESC, 

COUNT(*) 

FROM HISTORY_TYPE T, EMP E, EMP_HISTORY H 

WHERE H.EMPNO = E.EMPNO 
AND H.HIST_TYPE = T.HIST_TYPE 

GROUP BY H.EMPNO, E.ENAME, H.HIST_TYPE, T.TYPE_DESC; 

 

The above statement's performance may be improved via an inline function 

call as shown below: 

 

FUNCTION Lookup_Hist_Type (typ IN number) return varchar2 

AS 

 

 

 

 

 

BEGIN 

 

 

 

 

END; 

tdesc varchar2(30); 

CURSOR C1 IS 
SELECT TYPE_DESC 

FROM HISTORY_TYPE 

WHERE HIST_TYPE = typ; 

 
OPEN C1; 

FETCH C1 INTO tdesc; 

CLOSE C1; 

return (NVL(tdesc, ’?’)); 

 

FUNCTION Lookup_Emp (emp IN number) return varchar2 

AS 

 

 

 

 

 

BEGIN 

ename varchar2(30); 

CURSOR C1 IS 

SELECT ENAME 
FROM EMP 

WHERE EMPNO = emp; 

 
OPEN C1; 

FETCH C1 INTO ename; 

CLOSE C1; 
return (NVL(ename, ’?’)); 



END; 

 
SELECT H.EMPNO, Lookup_Emp(H.EMPNO), 

H.HIST_TYPE,   Lookup_Hist_Type(H.HIST_TYPE), 

COUNT(*) 
FROM EMP_HISTORY H 

GROUP BY H.EMPNO, H.HIST_TYPE; 

 
1 7 . Use Table Aliases 

 

Always use table aliases & prefix all column names by their aliases where 

there is more than one table involved in a query. This will reduce parse time & 

prevent syntax errors from occurring when ambiguously named columns are 

added later on. 

 
1 8 . Use EXI STS in Place of I N for Base Tables 

 

Many base table queries have to actually join with another table to satisfy a 

selection criteria. In such cases, the EXISTS (or NOT EXISTS) clause is often a 

better choice for performance. 

 
For e.g. 

 
Least Efficient : 

 
SELECT * 
FROM EMP (Base Table) 

WHERE EMPNO > 0 

AND DEPTNO I N (SELECT DEPTNO 

FROM DEPT 
WHERE LOC = ‘MELB’) 

 
Most Efficient : 

 

SELECT *  

FROM 

WHERE 

AND 

EMP 
EMPNO > 0 

EXI STS (SELECT 

 

 

‘X’ 

FROM DEPT 

WHERE DEPTNO = EMP.DEPTNO 

AND LOC = ‘MELB’) 

 
1 9 . Use NOT EXI STS in Place of NOT I N 

 

In sub-query statements such as the following, the NOT IN clause causes an 

internal sort/merge. The NOT IN clause is the all-time slowest test, because it 
forces a full read of the table in the sub-query SELECT. Avoid using NOT IN 

clause either by replacing it with Out er Joins or with NOT EXI STS clause as 

shown below: 

 
SELECT . . . 
FROM EMP 

WHERE DEPT_NO NOT I N (SELECT DEPT_NO 



FROM DEPT 

WHERE DEPT_CAT = ‘A’); 

 

To improve the performance, replace this code with: 

 
Method 1 ( Efficient ) : 

 

SELECT . . . 

FROM EMP A, DEPT B 

WHERE A.DEPT_NO = B.DEPT_NO (+) 

AND B.DEPT_NO IS NULL 
AND B.DEPT_CAT(+) = 'A' 

 
Method 2 ( Most Efficient) : 

 

SELECT . . .  

FROM 
WHERE 

EMP E 
NOT EXI STS (SELECT 

 

‘X’ 

FROM DEPT 

WHERE DEPT_NO = E.DEPT_NO 

AND DEPT_CAT = ‘A’); 
 

2 0 . Use Joins in Place of EXI STS 

 

In general join tables rather than specifying sub-queries for them such as the 

following: 
 

SELECT ENAME  

FROM EMP E  
WHERE EXI STS (SELECT ‘X’ 

FROM DEPT 

WHERE DEPT_NO = E.DEPT_NO 

AND DEPT_CAT = ‘A’); 

To improve the performance, specify: 

SELECT ENAME 
FROM DEPT D, EMP E 

WHERE E.DEPT_NO = D.DEPT_NO 

AND D.DEPT_CAT = ‘A’; 

 
2 1 . Use EXI STS in Place of DI STI NCT 

 

Avoid joins that require the DISTINCT qualifier on the SELECT list when you 

submit queries used to determine information at the owner end of a one-to-many 

relationship (e.g. departments that have many employees). 

 
For e.g. 

 
Least Efficient : 

 
SELECT DI STI NCT DEPT_NO, DEPT_NAME 

FROM DEPT D, EMP E 



WHERE D.DEPT_NO = E.DEPT_NO 

 
Most Efficient : 

 

SELECT DEPT_NO, DEPT_NAME 

FROM DEPT D 
WHERE EXI STS (SELECT ‘X’ 

FROM EMP E 

WHERE E.DEPT_NO = D.DEPT_NO); 

 

EXISTS is a faster alternative because the RDBMS kernel realizes that when 

the sub-query has been satisfied once, the query can be terminated. 

 
2 2 . I dentify " Poorly Perform ing" SQL statem ents 

Use the following queries to identify the poorly performing SQL statements. 

SELECT EXECUTIONS, DISK_READS, BUFFER_GETS, 

ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2)     Hit_Ratio, 
ROUND(DISK_READS/EXECUTIONS,2)    Reads_Per_Run, 

SQL_TEXT 

FROM V$SQLAREA 

WHERE EXECUTIONS > 0 

AND BUFFER_GETS > 0 

AND (BUFFER_GETS - DISK_READS) / BUFFER_GETS < 0.80 

ORDER BY 4 DESC; 

 
2 3 . Use TKPROF Ut ilit y t o View  Perform ance St at ist ics 

 

The SQL trace facility writes a trace file containing performance statistics for 

the SQL statements being executed. The trace file provides valuable information 

such as the number of parses, executes and fetches performed, various types of 

CPU & elapsed times, the number of physical & logical reads, etc, that you can 

use to tune your system. 

 

To enable SQL trace, use the following query: 

ALTER SESSION SET SQL_TRACE TRUE 

To globally enable SQL trace, you must set SQL_TRACE parameter to TRUE in 

init.ora. USER_DUMP_DEST parameter specifies the directory where SQL trace 

writes the trace file. 

 
2 4 . Use EXPLAI N PLAN To Analyze SQL St at em ent s 

 

Explain Plan is an Oracle function that analyzes SQL statements for 

performance without running the queries first. The results of the Explain Plan tell 

you the order that Oracle will search/join the tables, the types of access that will 

be employed (indexed search or full table scan), and the names of indexes that 

will be used. 

 

You should read the list of operations from the inside out and from top to 

bottom. Thus, if two operations are listed, the one that is the most indented will 



usually be executed first. If the two operations are at the same level of 

indentation, then the one that is listed first (with the lowest operation number) 

will be executed first. 

 

NESTED LOOPS joins are among the few execution paths that do not follow 

the “read from the inside out” rule of indented execution paths. To read the 

NESTED LOOPS execution path correctly, examine the order of the operations 

that directly provide data to the NESTED LOOPS operation. Of those operations, 

the operation with the lowest number is executed first. 

 
2 5 . Use I ndexes to I m prove Perform ance 

 

An index is a conceptual part of a database table that may be used to speed 

up the retrieval of data from that table. Internally, ORACLE uses a sophisticated 

self-balancing B- t ree index structure. 

 

Indexed retrieval of data from a database is almost always faster than a full- 

table scan. The ORACLE optimizer uses the indexes defined for a table when it 

figures out the most efficient retrieval path for a query or update statement. 

ORACLE also uses indexes in performing more efficient joins of multiple tables. 

Another benefit of indexes is that they provide a way to guarantee the 

uniqueness of the primary key in a table. 

 

You can index any column in a table except those defined with data types of 
LON G or LON G RAW . In general, indexes are most useful when they are 

specified on large tables. If small tables are frequently joined, however, you’ll 

find that performance improves when you index these tables too. 

 

Although indexes usually provide performance gains, there is a cost to using 

them. Indexes require storage space. They also require maintenance. Every time 

a record is added to or deleted from a table and every time an indexed column is 

modified, the index(es) itself must be updated as well. This can mean 4 or 5 

extra disk I/Os per INSERT, DELETE or UPDATE for a record. Because indexes 

incur the overhead of data storage & processing, you can actually degrade 

response time if you specify indexes that you don’t use. 

 

The maximum number of indexes is usually between 4 & 6 per table. Do keep 

the number of indexes over a single table to a minimum, but if an index is useful 

and response times can be kept below the agreed-upon limit for your site, then 

don’t hesitate to create the index. 

 
2 6 . Operat ions That Use I ndexes  

 

ORACLE performs two operations for accessing the indexes. 

 
  I NDEX UNI QUE SCAN 

 
In most cases, the optimizer uses index via the w here clause f 

the query. 

 
For e.g. 



Consider a table LODGING having two indexes on it: a 

unique index LODGING_PK on the Lodging column & a non-unique 

index LODGING$MANAGER on the Manager column. 

 

SELECT * 

FROM LODGING 

WHERE LODGING = ‘ROSE HILL’; 

 

Internally, the execution of the above query will be divided into 

two steps. First, the LODGING_PK index will be accessed via an 
I NDEX UNI QUE SCAN operation. The RowID value that matches the 

‘Rose Hill’ Lodging value will be returned from the index; that RowID 

value will then be used to query LODGING via a TABLE ACCESS BY 

ROW I D operation. 

 

If the value requested by the query had been contained within 

the index, then ORACLE would not have been needed to use the TABLE 

ACCESS BY ROWID operation; since the data would be in the index,  

the index would be all that was needed to satisfy the query. Because 

the query selected all columns from the LODGING table, and the index 

did not contain all of the columns of the LODGING table, the TABLE 

ACCESS BY ROWID operation was necessary. 

 

The query shown below would require only I NDEX UNI QUE 

SCAN operation. 

 

SELECT LODGING 

FROM LODGING 

WHERE LODGING = ‘ROSE HILL’; 

 
  I NDEX RANGE SCAN 

 
If you query the database based on a range of values, or if 

you query using a non- unique index , then an INDEX RANGE SCAN 

operation is used to query the index. 

 
Exam ple 1 : 

 
SELECT LODGING 
FROM LODGING 

WHERE LODGING LIKE ‘M%’ 

 
Since the w here clause contains a range of values, the unique 

LODGING_PK index will be accessed via an I NDEX RANGE SCAN 

operation. Because INDEX RANGE SCAN operations require reading 

multiple values from the index, they are less efficient than INDEX 

UNIQUE SCAN operations. Here, INDEX RANGE SCAN of LODGING_PK 

is the only operation required to resolve the query as only the 

LODGING column was selected by the query whose values are stored 

in the LODGING_PK index which is being scanned. 

 
Exam ple 2 : 



SELECT LODGING 

FROM LODGING 

WHERE MANAGER = ‘BILL GATES’; 

 

The above query will involve two operations: an I NDEX 

RANGE SCAN of LODGI NG$ MANAGER (to get the RowID values for 

all of the rows with ‘BILL GATES’ values in the MANAGER column), 
followed by a TABLE ACCESS BY ROW I D of the LODGING table (to 

retrieve the LODGING column values). Since the LODGING$MANAGER 

index is a non-unique index, the database cannot perform an INDEX 

UNIQUE SCAN on LODGING$MANAGER, even if MANAGER is equated 

to a single value in the query. 

 

Since the query selects the LODGING column & the LODGING 

column is not in the LODGING$MANAGER index, the I NDEX RANGE 

SCAN must be followed by a TABLE ACCESS BY ROW I D operation. 

 
When specifying a range of values for a column, an index w ill 

not be used if the first charact er specified is a w ildcard. The 

following query w ill not use the LODGING$MANAGER index: 

 
SELECT LODGING 
FROM LODGING 

WHERE MANAER LIKE ‘%HANMAN’; 

 

Here, a full table scan (TABLE ACCESS FULL operation) will be 

performed. 

 
2 7 . Select ion of Driving Table 

 

The Driving Table is the table that will be read first (usually via a TABLE 

ACCESS FULL operation). The method of selection for the driving table depends 

on the optimizer in use. 

 

If you are using the CBO, then the optimizer will check the statistics for the 

size of the tables & the selectivity of the indexes & will choose the path with the 

lowest overall cost. 

 

If you are using the RBO, and indexes are available for all join conditions, 
then the driving table will usually be the table that is listed last in the FROM 

clause. 

 
For e.g. 

 

SELECT A.NAME, B.MANAGER 

FROM WORKER A, 
LODGING B 

WHERE A.LODGING = B.LODGING; 

 

Since an index is available on the LODGING column of the LODGING 

table, and no comparable index is available on the WORKER table, the 
W ORKER table will be used as the driving table for the query. 



2 8 . Tw o or More Equalit y I ndexes  

 

When a SQL statement has two or more equality indexes over different tables 

(e.g. WHERE = value) available to the execution plan, ORACLE uses both indexes 

by merging them at run time & fetching only rows that are common to both 

indexes. 

 

The index having a UNIQUE clause in its CREATE INDEX statement ranks 

before the index that does not have a UNIQUE clause. However, this is true only 

when they are compared against constant predicates. If they are compared 

against other indexed columns from other tables, such clauses are much lower on 

the optimizer’s list. 

 
If the two equal indexes are over two different tables, table sequence 

determines which will be queried first; the table specified last in the FROM clause 

outranks those specified earlier. 

 
If the two equal indexes are over the sam e t able, the index referenced first 

in the WHERE clause ranks before the index referenced second. 

 
For e.g. 

 

There is a non-unique index over DEPTNO & a non-unique index over 

EMP_CAT: 

 
SELECT ENAME 
FROM EMP 

WHERE DEPTNO = 20 

AND EMP_CAT = ‘A’; 

 

Here, the DEPTNO index is retrieved first, followed by (merged with) the 

EMP_CAT indexed rows. The Explain Plan is as shown below: 

 

TABLE ACCESS BY ROWID ON EMP 

AND-EQUAL 

INDEX RANGE SCAN ON DEPT_IDX 

INDEX RANGE SCAN ON CAT_IDX 

 
2 9 . Equalit y & Range Predicat es 

 

When indexes combine both equality & range predicates over the same table, 
ORACLE cannot merge these indexes. It uses only the equality predicate.  

 
For e.g. 

 

There is a non-unique index over DEPTNO & a non-unique index over 

EMP_CAT: 

 

SELECT ENAME 
FROM EMP 

WHERE DEPTNO > 20 

AND EMP_CAT = ‘A’; 



Here, only the EMP_CAT index is utilized & then each row is validated 

manually. The Explain Plan is as shown below: 

 

TABLE ACCESS BY ROWID ON EMP 

INDEX RANGE SCAN ON CAT_IDX 

 
3 0 . No Clear Ranking W inner 

 

When there is no clear index “ranking” winner, ORACLE will use only one of 

the indexes. In such cases, ORACLE uses the first index referenced by a WHERE 

clause in the statement. 

 
For e.g. 

 

There is a non-unique index over DEPTNO & a non-unique index over 

EMP_CAT: 

 
SELECT ENAME 
FROM EMP 

WHERE DEPTNO > 20 

AND EMP_CAT > ‘A’; 

 

Here, only the DEPT_NO index is utilized & then each row is validated 

manually. The Explain Plan is as shown below: 

 
TABLE ACCESS BY ROWID ON EMP 

INDEX RANGE SCAN ON DEPT_IDX 

 
3 1 . Explicit ly Disabling an I ndex 

 

If two or more indexes have equal ranking, you can force a particular index 

(that has the least number of rows satisfying the query) to be used. 

Concatenating || ‘’ to character column or + 0 to numeric column suppresses the 

use of the index on that column. 
 

For e.g. 

 

SELECT 

 

 
ENAME 

 

FROM 

WHERE 

EMP 

EMPNO 
 

= 7935 
AND 

AND 

DEPTNO + 0 

EMP_TYPE || ‘’ 

= 10 

= ‘A’; 
 

This is a rather dire approach to improving performance because disabling the 

WHERE clause means not only disabling current retrieval paths, but also disabling 

all future paths. You should resort to this strategy only if you need to tune a few 

particular SQL statements individually. 

 

Here is an example of when this strategy is justified. Suppose you have a 

non-unique index over the EMP_TYPE column of the EMP table, and that the 

EMP_CLASS column is not indexed: 

 

SELECT ENAME 



FROM EMP 

WHERE EMP_TYPE = ‘A’ 

AND EMP_CLASS = ‘X’; 

 

The optimizer notices that EMP_TYPE is indexed & uses that path; it is the  

only choice at this point. If, at a later time, a second, non-unique index is added 

over EMP_CLASS, the optimizer will have to choose a selection path. Under 

normal circumstances, the optimizer would simply use both paths, performing a 

sort/merge on the resulting data. However, if one particular path is nearly unique 

(perhaps it returns only 4 or 5 rows) & the other path has thousands of 

duplicates, then the sort/merge operation is an unnecessary overhead. In this 

case, you will want to remove the EMP_CLASS index from optimizer  

consideration. You can do this by recording the SELECT statement as follows: 
 

SELECT ENAME  

FROM EMP  
WHERE 

AND 

EMP_TYPE 

EMP_CLASS || ‘’ 

= ‘A’ 

= ‘X’; 
 

3 2 . Avoid Calculat ions on I ndexed Colum ns 
 

If the indexed column is a part of a function (in the WHERE clause), the 

optimizer does not use an index & will perform a full-table scan instead. 
 

Not e :  
The SQL functions MI N & MAX are except ions to this rule & will 

utilize all available indexes. 

 
For e.g. 

 
Least Efficient : 

 

SELECT . . . 
FROM DEPT 

WHERE SAL * 12 > 25000; 

 
Most Efficient : 

 

SELECT . . . 

FROM DEPT 

WHERE SAL > 25000 / 12; 

 
3 3 . Aut om at ically Suppressing I ndexes  

 

If a table has two (or more) available indexes, and that one index is unique & 

the other index is not unique, in such cases, ORACLE uses the unique retrieval 

path & completely ignores the second option. 

 
For e.g. 

 
SELECT ENAME 

FROM EMP 

WHERE EMPNO = 2362 



AND DEPTNO = 20; 

 

Here, there is a unique index over EMPNO & a non-unique index over DEPTNO 

The EMPNO index is used to fetch the row. The second predicate (DEPTNO = 20) 

is then evaluated (no index used). The Explain Plan is as shown below: 

 
TABLE ACCESS BY ROWID ON EMP 

INDEX UNIQUE SCAN ON EMP_NO_IDX 

 
3 4 . Avoid NOT on I ndexed Colum ns 

 

In general, avoid using NOT when testing indexed columns. The NOT function 

has the same effect on indexed columns that functions do. When ORACLE 

encounters a NOT, it will choose not to use the index & will perform a full-table 

scan instead. 

 
For e.g. 

 
Least Efficient : ( Here, index w ill not be used) 

 

SELECT . . . 

FROM DEPT 

WHERE DEPT_CODE NOT = 0; 

 
Most Efficient : ( Here, index w ill be used) 

 
SELECT . . . 
FROM DEPT 

WHERE DEPT_CODE > 0; 

 

In a few cases, the ORACLE optimizer will automatically transform NOTs 

(when they are specified with other operators) to the corresponding functions: 
 

NOT > to <= 
NOT >= to < 

NOT < 

NOT <= 

to 

to 

>= 

> 
 

3 5 . Use > =  instead of > 

If there is an index on DEPTNO, then try 

SELECT * 
FROM EMP 

WHERE DEPTNO >= 4 

Instead of 

SELECT * 

FROM EMP 
WHERE DEPTNO > 3 



Because instead of looking in the index for the first row with column = 3 and 

then scanning forward for the first value that is > 3, the DBMS may jump directly 

to the first entry that is = 4. 

 
3 6 . Use UNI ON in Place of OR ( in case of I ndexed Colum ns) 

 

In general, always use UNION instead of OR in WHERE clause. Using OR on 

an indexed column causes the optimizer to perform a full-table scan rather than 

an indexed retrieval. Note, however, that choosing UNION over OR will be 

effective only if both columns are indexed; if either column is not indexed, you 

may actually increase overheads by not choosing OR. 

 

In the following example, both LOC_ID & REGION are indexed. 

Specify the following: 

SELECT LOC_ID, LOC_DESC, REGION 

FROM LOCATION 

WHERE LOC_ID = 10 

UNION 

SELECT LOC_ID, LOC_DESC, REGION 

FROM LOCATION 

WHERE REGION = ‘MELBOURNE’ 

 

instead of 

 

SELECT LOC_ID, LOC_DESC, REGION 

FROM LOCATION 
WHERE LOC_ID = 10 

OR REGION = ‘MELBOURNE’ 

 

If you do use OR, be sure that you put the most specific index first in the OR’s 

predicate list, and put the index that passes the most records last in the list. 

 

Note that the following: 
 

WHERE KEY1 = 10 Should return least rows 

OR KEY2 = 20 Should return m ost rows 
 

is internally translated to: 

 
WHERE KEY1 = 10 

AND (KEY1 NOT = 10 AND KEY2 = 20) 

 
3 7 . Use I N in Place of OR 

 

The following query can be replaced to improve the performance as shown 

below: 

 
Least Efficient : 

 
SELECT . . . 

FROM LOCATION 



WHERE LOC_ID = 10 

OR LOC_ID = 20 

OR LOC_ID = 30 

 
Most Efficient : 

 
SELECT . . . 
FROM LOCATION 

WHERE LOC_IN IN (10,20,30) 

 
3 8 . Avoid I S NULL & I S NOT NULL on I ndexed Colum ns 

 

Avoid using any column that contains a null as a part of an index. ORACLE 

can never use an index to locate rows via a predicate such as IS NULL or IS NOT 

NULL. 

 

In a single-column index, if the column is null, there is no entry within the 

index. For concatenated index, if every part of the key is null, no index entry 

exists. If at least one column of a concatenated index is non-null, an index entry 

does exist. 

 
For e.g. 

 

If a UNIQUE index is created over a table for columns A & B and a key value   

of (123, null) already exists, the system will reject the next record with that key 

as a duplicate. However, if all of the indexed columns are null (e.g. null, null), the 

keys are not considered to be the same, because in this case ORACLE considers 

the whole key to be null & null can never equal null. You could end up with 1000 

rows all with the same key, a value of null ! 

 

Because null values are not a part of an index domain, specifying null on an 

indexed column will cause that index to be omitted from the execution plan. 

 
For e.g. 

 
Least Efficient : ( Here, index w ill not be used) 

 
SELECT . . . 

FROM DEPARTMENT 

WHERE DEPT_CODE I S NOT NULL; 

 
Most Efficient : ( Here, index w ill be used) 

 

SELECT . . . 
FROM DEPARTMENT 

WHERE DEPT_CODE > =  0 ; 

 
3 9 . Alw ays Use Leading Colum n of a Mult icolum n I ndex 

 

If the index is created on multiple columns, then the index will only be used if 

the leading column of the index is used in a limiting condition (where clause) of 

the query. If your query specifies values for only the non-leading columns of the 

index, then the index will not be used to resolve the query. 



 

4 0 . Oracle I nt ernal Operat ions 

 

ORACLE performs internal operations when executing the query. The following 

table shows some of the important operations that ORACLE performs, while 

executing the query. 

 

Oracle Clause Oracle I nt ernal Operat ions 

perform ed 

  
ORDER BY SORT ORDER BY 

UNION UNION-ALL 

MINUS MINUS 

INTERSECT INTERSECTION 

DISTINCT, MINUS, INTERSECT, UNION SORT UNIQUE 

MIN, MAX, COUNT SORT AGGREGATE 

GROUP BY SORT GROUP BY 

ROWNUM COUNT or COUNT STOPKEY 

Queries involving Joins SORT JOIN, MERGE JOIN, NESTED 

LOOPS 

CONNECT BY CONNECT BY 

 
 

4 1 . Use UNI ON- ALL in Place of UNI ON ( W here Possible) 

 

When the query performs a UNION of the results of two queries, the two 

result sets are merged via UNION-ALL operation & then the result set is 

processed by a SORT UNIQUE operation before the records are returned to the 

user. 

 

If the query had used a UNION-ALL function in place of UNION, then the 

SORT UNIQUE operation would not have been necessary, thus improving the 

performance of the query. 

 
For e.g. 

 
Least Efficient : 

 

SELECT ACCT_NUM, BALANCE_AMT 

FROM DEBIT_TRANSACTIONS 

WHERE TRAN_DATE = ‘31-DEC-95’ 

UNION 

SELECT ACCT_NUM, BALANCE_AMT 

FROM CREDIT_TRANSACTIONS 

WHERE TRAN_DATE = ‘31-DEC-95’ 

 
Most Efficient : 

 

SELECT ACCT_NUM, BALANCE_AMT 

FROM DEBIT_TRANSACTIONS 

WHERE TRAN_DATE = ‘31-DEC-95’ 

UNION ALL 



SELECT ACCT_NUM, BALANCE_AMT 

FROM CREDIT_TRANSACTIONS 

WHERE TRAN_DATE = ‘31-DEC-95’ 

 
4 2 . Using Hint s 

 

For table accesses, there are 2 relevant hints: 

FULL & ROWID 

The FULL hint tells ORACLE to perform a full table scan on the listed table. 

 
For e.g. 

 

SELECT /*+ FULL(EMP) */ * 

FROM EMP 
WHERE EMPNO = 7839; 

 

The ROWID hint tells the optimizer to use a TABLE ACCESS BY ROWID 

operation to access the rows in the table. 

 

In general, you should use a TABLE ACCESS BY ROWID operation 

whenever you need to return rows quickly to users and whenever the tables 

are large. To use the TABLE ACCESS BY ROWID operation, you need to either 

know the ROWID values or use an index. 

 

If a large table has not been marked as a cached table & you wish 

for its data to stay in the SGA after the query completes, you can use the 

CACHE hint to tell the optimizer to keep the data in the SGA for as long as 

possible. The CACHE hint is usually used in conjunction with the FULL hint. 

 
For e.g. 

 

SELECT /*+ FULL(WORKER) CACHE(WORKER) */ * 

FROM WORKER; 

 

The INDEX hint tells the optimizer to use an index-based scan on the 

specified table. You do not need to mention the index name when using the 

INDEX hint, although you can list specific indexes if you choose. 

 
For e.g. 

 

SELECT /* + INDEX(LODGING) */ LODGING 

FROM LODGING 
WHERE MANAGER = 'BILL GATES'; 

 

The above query should use the index without the hint being needed. 

However, if the index is non-selective & you are using the CBO, then the 

optimizer may choose to ignore the index during the processing. In that case, 

you can use the INDEX hint to force an index-based data access path to be 

used. 

 

There are several hints available in ORACLE such as ALL_ROWS, 



FIRST_ROWS, RULE, USE_NL, USE_MERGE, USE_HASH, etc for tuning the 

queries. 

 
4 3 . Use W HERE I nst ead of ORDER BY Clause 

 

ORDER BY clauses use an index only if they meet 2 rigid requirements. 

 

  All of the columns that make up the ORDER BY clause must be contained 

within a single index in the sam e sequence.  

 

  All of the columns that make up the ORDER BY clause must be defined as 

NOT NULL within the table definition. Remember, null values are not 

contained within an index. 

 

WHERE clause indexes & ORDER BY indexes cannot be used in parallel. 

 
For e.g. 

 

Consider a table DEPT with the following fields: 
 

DEPT_CODE PK NOT NULL 
DEPT_DESC 

DEPT_TYPE 
 NOT NULL 

NULL 
 

NON UNIQUE INDEX (DEPT_TYPE) 

 
Least Efficient : ( Here, index w ill not be used) 

 

SELECT DEPT_CODE 
FROM DEPT 

ORDER BY DEPT_TYPE 

 
Explain Plan: 

 
SORT ORDER BY 

TABLE ACCESS FULL 

 
Most Efficient : ( Here, index w ill be used) 

 

SELECT DEPT_CODE 
FROM DEPT 

W HERE DEPT_TYPE > 0 

 
Explain Plan: 

 
TABLE ACCESS BY ROWID ON EMP 

INDEX RANGE SCAN ON DEPT_IDX 

 
4 4 . Avoid Converting I ndex Colum n Types  

 

ORACLE automatically performs simple column type conversion or casting, 

when it compares two columns of different types. 



Assume that EMPNO is an indexed num eric colum n. 

 
SELECT . . . 
FROM EMP 

WHERE EMPNO = ‘123’ 

In fact, because of conversion, this statement will actually be processed as: 

SELECT . . . 
FROM EMP 

WHERE EMPNO = TO_ NUMBER(‘123’) 

 

Here, even though a type conversion has taken place, index usage is not 

affected. 

 

Now assume that EMP_TYPE is an indexed CHAR colum n. 

 
SELECT . . . 

FROM EMP 

WHERE EMP_TYPE = 123 

This statement will actually be processed as: 

SELECT . . . 
FROM EMP 

WHERE TO_ NUMBER(EMP_TYPE) = 123 

 

Indexes cannot be used, if they are included in a function. Therefore, this 

internal conversion will keep the index from being used. 

 
4 5 . Bew are of t he W HEREs 

 

Some SELECT statement WHERE clauses do not use indexes at all. Here, are 

some of the examples shown below: 

 

In the following example, the !=  function cannot use an index.  

Remember, indexes can tell you what is in a table, but not what is not in a table. 
All references to NOT, !=  and < >  disable index usage: 

 
Do N ot Use: 

 
SELECT ACCOUNT_NAME 
FROM TRANSACTION 

WHERE AMOUNT !=  0 ; 

 
Use: 

 
SELECT ACCOUNT_NAME 
FROM TRANSACTION 

WHERE AMOUNT >  0 ; 

 

In the following example, || is the concatenate function. It, like other 

functions, disables indexes. 



 

Do N ot Use: 

 

SELECT ACCOUNT_NAME, AMOUNT 

FROM TRANSACTION 
WHERE ACCOUNT_NAME || ACCOUNT_TYPE = ‘AMEXA’; 

 
Use: 

 

SELECT ACCOUNT_NAME, AMOUNT 

FROM TRANSACTION 
WHERE ACCOUNT_NAME = ‘AMEX’ 

AND ACCOUNT_TYPE = ‘A’; 

 
In the following example, addition (+) is a function and disables the index. 

The other arithmetic operators (-, *, and /) have the same effect. 

 
Do N ot Use: 

 

SELECT ACCOUNT_NAME, AMOUNT 

FROM TRANSACTION 
WHERE AMOUNT+ 3 0 0 0 < 5000; 

 
Use: 

 

SELECT ACCOUNT_NAME, AMOUNT 

FROM TRANSACTION 
WHERE AMOUNT < 2000; 

 

In the following example, indexes cannot be used to compare indexed 

columns against the same index column. This causes a full-table scan. 

 
Do N ot Use: 

 

SELECT ACCOUNT_NAME, AMOUNT 

FROM TRANSACTION 
WHERE ACCOUNT_ NAME = NVL(:ACC_NAME, ACCOUNT_ NAME); 

 
Use: 

 

SELECT ACCOUNT_NAME, AMOUNT 

FROM TRANSACTION 

WHERE ACCOUNT_NAME LIKE NVL(:ACC_NAME, ‘%’); 

 
4 6 . CONCATENATI ON of Mult iple Scans 

 

If you specify a list of values for a column’s limiting condition, then the 

optimizer may perform multiple scans & concatenate the results of the scans. 

 
For e.g. 

 

SELECT * 

FROM LODGING 



WHERE MANAGER IN (‘BILL GATES’, ‘KEN MULLER’); 

 

The optimizer may interpret the query as if you had provided two 

separate limiting conditions, with an OR clause as shown below: 

 

SELECT * 
FROM LODGING 

WHERE MANAGER = ‘BILL GATES’ 

OR MANAGER = ‘KEN MULLER’; 

 

When resolving the above query, the optimizer may perform an INDEX 

RANGE SCAN on LODGING$MANAGER for each of the limiting conditions. The 

RowIDs returned from the index scans are used to access the rows in the 

LODGING table (via TABLE ACCESS BY ROWID operations). The rows   

returned from each of the TABLE ACCESS BY ROWID operations are combined 

into a single set of rows via the CONCATENATION operation. 

 

The Explain Plan is as shown below: 

 
SELECT STATEMENT Optimizer=CHOOSE 

CONCATENATION 

TABLE ACCESS (BY INDEX ROWID) OF LODGING 

INDEX (RANGE SCAN) OF LODGING$MANAGER (NON-UNIQUE) 

TABLE ACCESS (BY INDEX ROWID) OF LODGING 

INDEX (RANGE SCAN) OF LODGING$MANAGER (NON-UNIQUE) 

 

4 7 . Use t he Select ive I ndex ( Only For CBO) 

 

The Cost-Based Optimizer can use the selectivity of the index to judge 

whether using the index will lower the cost of executing the query. 

 

If the index is highly selective, then a small number of records are associated 

with each distinct column value. 

 

For example, if there are 100 records in a table & 80 distinct values for a 

column in that table, then the selectivity of an index on that column is 80/100 = 

0.80 The higher the selectivity, the fewer the number of rows returned for each 

distinct value in the column. 

 

If an index has a low selectivity, then the many INDEX RANGE SCAN 

operations & TABLE ACCESS BY ROWID operations used to retrieve the data may 

involve more work than a TABLE ACCESS FULL of the table. 

 
4 8 . Avoid Resource I nt ensive Operat ions 

 

Queries which uses DISTINCT, UNION, MINUS, INTERESECT, ORDER BY and 

GROUP BY call upon SQL engine to perform resource intensive sorts. A DISTINCT 

requires one sort, the other set operators requires at least two sorts. 

 
For example, a UNI ON of queries in which each query contains a group by 

clause will require nested sorts; a sorting operation would be required for each of 
the queries, followed by the SORT UNIQUE operation required for the UNI ON. 

The sort operation required for the UNI ON will not be able to begin until the 



sorts for the group by clauses have completed. The more deeply nested the 

sorts are, the greater the performance impact on your queries. 

 

Other ways of writing these queries should be found. Most queries that use 

the set operators, UNION, MINUS and INTERSECT, can be rewritten in other 

ways. 

 
4 9 . GROUP BY & Predicat e Clauses 

 

The performance of GROUP BY queries can be improved by eliminating 

unwanted rows early in the selection process. The following two queries return 

the same data, however, the second is potentially quicker, since rows will be 

eliminated before the set operators are applied. 

 
For e.g. 

 
Least Efficient : 

 
SELECT JOB, AVG(SAL) 

FROM EMP 

GROUP BY JOB 

HAVING JOB = ‘PREDIDENT’ 

OR JOB = ‘MANAGER’ 

 
Most Efficient : 

 

SELECT JOB, AVG(SAL) 

FROM EMP 

WHERE JOB = ‘PREDIDENT’ 

OR JOB = ‘MANAGER’ 

GROUP BY JOB 

 
5 0 . Using Dat es 

 

When using dates, note that, if more than 5 decimal places are added to a 

date, the date is actually rounded up to the next day ! 

 
For e.g. 

 

SELECT TO_DATE(’01-JAN-93’) + .99999 

FROM DUAL; 

 

returns: 

 

’01-JAN-93 23:59:59’ 

 

And, 

 

SELECT TO_DATE(’01-JAN-93’) + .999999 

FROM DUAL; 

 

returns: 



‘02-JAN-93 00:00:00’ 

 
5 1 . Use Explicit Cursors 

 

When implicit cursors are used, two calls are made to the database, once to 

fetch the record and then to check for the TOO MANY ROWS exception. Explicit 

cursors prevent the second call. 

 
5 2 . Tuning EXPort & I MPort 

 
Run Export & Import with a large buffer size, say 10 MB (10,240,000) to 

speed up the process. Oracle will acquire as much as you specify and will not 

return an error if it can 't find that amount. Set this value to at least as large as 

the largest table column value, otherwise the field will be truncated. 

 
5 3 . Table and I ndex Splitting 

 

Always create separate tablespaces for your tables & indexes and never put 

objects that are not part of the core Oracle system in the system tablespace. Also 

ensure that data tablespaces & index tablespaces reside on separate disk drives. 

 

The reason is to allow the disk head on one disk to read the index information 

while the disk head on the other disk reads the table data. Both reads happen 

faster because one disk head is on the index and the other is on the table data. If 

the objects were on the same disk, the disk head would need to reposition itself 

from the index extent to the data extent between the index read and the data 

read. This can dramatically decrease the throughput of data in a system. 

 
5 4 . CPU Tuning 

 

Allocate as much real memory as possible to the shared pool & database 

buffers (SHARED_POOL_SIZE & DB_BLOCK_BUFFERS in init.ora) to permit as 

much work as possible to be done in memory. Work done in memory rather than 

disk does not use as much CPU. 

 

Set the SEQUENCE_CACHE_ENTRIES in init.ora high. (Default is 10 - try 

setting it to 1000). 

 

Allocate more than the default amount of memory to do sorting 

(SORT_AREA_SIZE); memory sorts not requiring I/O use much less CPU. 

 

On multi-CPU machines, increase the LOG_SIMULTANEOUS_COPIES to allow 

one process per CPU to copy entries into the redo log buffers. 

 
5 5 . Use UTLBst at & UTLEst at t o Analyze Dat abase Perform ance 

 

Oracle supplies two scripts UTLBstat.sql & UTLEstat.sql to gather a snapshot 

of ORACLE performance over a given period of time. 

 

UTLBstat gathers the initial performance statistics. It should not be run 

immediately after the database has started or it will skew your results as none of 

the system caches are loaded initially. 



UTLEstat gathers performance statistics at the end of your observations 

period. This script must be run at the end of the period for which you want to 

tune performance. It then generates a report of the complete information. 

 

In order that all the statistics to be populated during a UTLBstat/UTLEstat 

session, you must set TIMED_STATISTICS=TRUE in init.ora 

 

You must run UTLBstat from sqldba, because it does a connect internal to 

start the collection of statistics. 

 

Sqldba> @utlbstat.sql 

 

The output from UTLBstat/UTLEstat is placed in report.txt 

 
5 6 . I nterpreting the Output ( report.txt)  from UTLBst at / UTLEstat 

 
  Library Cache 

 

This cache contains parsed & executable SQL statements. An 

important key to tuning the SGA is ensuring that the library cache is large 

enough so Oracle can keep parsed & executable statements in the shared 

pool. 

 

RELOAD represents entries in the library cache that were parsed more 

than once. You should strive for zero RELOADs. The solution is to increase 

SHARED_POOL_SIZE parameter. Alternatively, you can calculate this ratio by 

using the following query. 

 
SELECT SUM(pins), SUM(reloads), 

SUM(reloads) / (SUM(pins)+SUM(reloads)) * 100 

FROM V$LIBRARYCACHE 

If the ratio is above 1%, increase the SHARED_POOL_SIZE in init.ora 

GETHITRATIO & PINHITRATIO should always be greater than 80%. If 

you fall below this mark, you should increase the value of 

SHARED_POOL_SIZE. 

 
  Hit Rat io 

Determine the Hit Ratio using the following formulae: 

Logical Reads = Consistent Gets + DB Block Gets 

Hit Ratio = (Logical Reads - Physical Reads) / Logical Reads 
 

Hit Ratio should be greater than 80%. If the Hit Ratio is less than 

80%, increase the value of DB_BLOCK_BUFFERS (data cache). The larger the 

data cache, the more likely the Oracle database will have what it needs in 

memory. The smaller the cache, the more likely Oracle will have to issue I/Os 

to put the information in the cache. 

 
  Buffer Busy W ait Ratio 



The goal is to eliminate all waits for resources. Determine the ratio 

using the following formulae. 

 
Logical Reads = Consistent Gets + DB Block Gets 

Buffer Busy Wait Ratio = Buffer Busy Waits / Logical Reads 

A ratio of greater than 4% is a problem. 

  Sorts 

 

The sorts (disk) row tells you how many times you had to sort to disk; 

that is a sort that could not be handled by the size you specified for 

SORT_AREA_SIZE parameter. 

 

The sorts (memory) row tells you how many times you were able to 

complete the sort using just memory. Usually, 90% or higher of all sorting 

should be done in memory. 

 

To eliminate sorts to disk, increase SORT_AREA_SIZE parameter. The 

larger you make SORT_AREA_SIZE, the larger the sort that can be 

accomplished by Oracle in memory. Unlike other parameters, this is allocated 

per user. This is taken from available memory, not from the Oracle SGA area 

of memory. 

 
  Chained Blocks 

 

Eliminate Chained Block. If you suspect chaining in your database & it 

is small enough, export and import the entire database. This will repack the 

database, eliminating any chained blocks. 

 
  Dictionary Cache 

 

Dictionary Cache contains data dictionary information pertaining to 

segments in the database (e.g. indexes, sequences, and tables) file space 

availability (for acquisition of space by object creation & extension) and object 

privileges. 

 

A well-tuned database should report an average dictionary cache hit 

ratio of over 90% by using following query: 

 

SELECT (1- (sum(getmisses) / 

(SUM(gets)+SUM(getmisses))))*100 "Hit Ratio" 

FROM V$ROWCACHE 

 
  Database Buffer Cache 

 
A Cache Hit means the information required is already in memory. 

A Cache Miss means Oracle must perform disk I/O to satisfy a request. 

 

The secret when sizing the database buffer cache is to keep the cache 

misses to a minimum. 


